PHBV/bioglass composite scaffolds with co-cultures of endothelial cells and bone marrow stromal cells improve vascularization and osteogenesis for bone tissue engineering
نویسندگان
چکیده
Polyhydroxybutyrate–polyhydroxyvalerate (PHBV) and bioglass (BG) have been widely reported to be suitable for bone tissue engineering. However, composite scaffolds with polymers and bioceramics have shown advantages over pure polymer and bioceramic scaffolds for bone tissue engineering. In addition, recent studies have shown that cross-talk between endothelial cells and osteoblastic cells can stimulate bone regeneration compared to tissue engineering constructs containing only one type of cell. Therefore, in this study, we aim to construct an improved engineered bone containing PHBV/BG composite scaffold with co-cultures of human umbilical vein endothelial cells (HUVECs) and human bone marrow stromal cells (HBMSCs) in order to enhance osteogenesis and angiogenesis of bone repair. Results showed that addition of BG into PHBV could enhance osteogenic differentiation of co-cultured HBMSCs and vascularization of co-cultured HUVECs by upregulating paracrine effects between the two types of cells compared to pure PHBV scaffolds. Among all groups, composite scaffolds containing PHBV with 10% BG showed the strongest stimulatory effects on osteogenic differentiation and vascularization due to their appropriate ion products, specifically, the appropriate concentration of silicon ions. In vivo results also demonstrated that PHBV containing 10% BG scaffolds with co-cultures of HUVECs and HBMSCs showed the strongest stimulatory effects on osteogenesis and angiogenesis among all groups. Taken together, PHBV/BG scaffolds with co-cultures of endothelial cells and osteogenic cells possess great application potential for bone tissue engineering.
منابع مشابه
Comparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds
Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...
متن کاملInvestigating the Vascularization of Tissue-Engineered Bone Constructs Using Dental Pulp Cells and 45S5 Bioglass® Scaffolds
Identification of a suitable cell source combined with an appropriate 3D scaffold is an essential prerequisite for successful engineering of skeletal tissues. Both osteogenesis and angiogenesis are key processes for bone regeneration. This study investigated the vascularization potential of a novel combination of human dental pulp stromal cells (HDPSCs) with 45S5 Bioglass® scaffolds for tissue-...
متن کاملCombined biomaterial signals stimulate communications between bone marrow stromal cell and endothelial cell
It has been widely reported that chemical, structural or mechanical signals of biomaterials can impact cell behaviors and tissue regeneration, but few studies have investigated the effects of biomaterial signals on cell–cell interactions although communications between cells are critical for tissue regeneration. Our recent studies have shown that chemical signals of bioglass (BG) can stimulate ...
متن کاملPerspectives of chitosan nanofiber/film scaffolds with bone marrow stromal cells in tissue engineering and wound dressing
Objective (s): Several methods have been proposed for repairing defects and damages, one of which is cell therapy. Bone marrow stromal cells seem to be suitable for this purpose. On the other hand, many biometric materials are used to improve and correct the defects in the body. Nanofibers are widely used in the medical industry, especially in tissue engineering, as scaffolds in wound healing a...
متن کاملInduction of Mineralized Nodule Formation in Rat Bone Marrow Stromal Cell Cultures by Silk Fibroin
Background: Silk fibroin is a suitable protein for osteogenesis by inducing markers of bone formation in the cultures of osteoblasts, so we examined the ability of this protein to induce mineralized nodules in the rat bone marrow stromal cell cultures. Methods: Bone marrow stromal cells obtained from 4 to 6 weeks old Spruge-Dawely male rats were grown in primary culture for seven days and then ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017